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OVERVIEW

❖ STATISTICAL INTERPOLATION FOR SNOW DEPTH ANALYSIS

❖ NEW STUDY* (Kongoli and Smith, Front. Earth Sci., 2023, volume 11)

❖ Measured snow depth spatial correlations over North America

❖ Fitted correlation functions and scale parameter estimates

❖ Main findings

❖ IMPLICATIONS FOR OPERATIONAL SNOW DEPTH ANALYSIS

* Modelling and estimation of snow depth spatial correlation structure from 

observations over North America”
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STATISTICAL/OPTIMAL INTERPOLATION FOR SNOW DEPTH

❖ Introduced by Brasnett (1999)

Brasnett, B., 1999. A global analysis of snow depth for numerical weather 

prediction. J. Appl. Meteor.,38,726-740.

❖ Uses station-measured snow depth observations to generate daily 

gridded snow depth maps over the globe at 24 km resolution

-------------------------------------------------------------------------------------------------

Kriging Interpolation Method, adapted for use in meteorology by L.S. 

Gandin, 1965. “Objective Analysis of Meteorological Fields”, Israel Program for 

Scientific Translation (from Russian).     
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STATISTICAL/OPTIMAL INTERPOLATION FOR SNOW DEPTH (SD)

EXAMPLE USING ONLY THREE MEASUREMETS

SD_Increment1
SD_increment2

SD_increment3

SD_increment_ 

InterpolatedSD_initial

W1

SD1
SD_initial1

SD2 SD_initial2

SD3 SD_initial3

Predicted SD

➢ Snow depth increment is the 

difference between the 

measured snow depth and an 

initial guess snow depth 

➢ SD_increment_interpolatedis 

calculated as the weighted  

average of the snow depth 

increments  at stations 1,2, 

and 3. 

➢ W1, W2, and W3 are the 

spatial weights 

calculated from linear 

equations with 

coefficients the spatial 

correlations among pairs 

of stations/interpolation

grid cell  

W2

W3
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Snow Depth Optimal Interpolation (OI)

❖ SD increment at analysis point k ∆SDk is computed as the

weighted average of observed increments ∆SDi surrounding k:

∆SDi is the difference between the observed SD and the first guess SD at       

each observation point i  [ i = 1, N]

❖The vector of optimum weights at k is computed by solving the set of N 

linear  equations of the matrix form:  

is the correlation matrix of SD increments between all pairs of          

observations

is the correlation vector of pairs of  of observations and interpolation point k

is the matrix of SD observational errors (normalized by the 

first guess SD error variance) between all pairs of observations
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Brasnett (1999) Increment Correlation Functions  

❖ Correlation coefficients         between pairs of observations are computed as 

the product between the horizontal and vertical distance correlation functions:

rij is the horizontal separation distance between observations

is elevation (vertical) separation distance between observations

2nd order autoregressive correlation function for horiz. distance

α(rij) = (1 + crij) exp(- crij)    c = 0.018 km-1 (e-folding scale ≈ 120 km)

Square exponential correlation function for vertical distance

β(Δzij) =  exp(- (Δzij/h )2)     h  = 800 m        (e-folding scale = 800 m)

)()( ijijij zr = 
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Plots of spatial correlations as a function of horizonal 

distance for several vertical distance values 
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Canadian Meteorological Center (CMC) Brasnett 1999 J. Applied. 

Meteorol, Global Snow Depth Analysis

KEY FEATURES

❖ 2-D Optimal Interpolation (OI) since 

March 1998, at 24-km & every 6 hours 

❖ Initial guess - a simple snow 

accumulation and melt model using 

analyzed temperatures and forecast (six 

hour) precipitation from the CMC Global

Environmental Multiscale (GEM) forecast

❖ Driven by in-situ SD observations; 

In regions where there are no SD 

observations, analysis SD corresponds 

to the initial guess field. SYNOP STATIONS

Operational CMC SD Analysis 

Flowchart

Jan. May

Monthly SD

SD data-poor  
No SD Data

First-guess
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Motivation for estimating spatial correlation structure 

❖ No information provided of how well the correlation functions 

represent the structure of snow depth increments (nowhere to be 

found in Gandin (1965) that the paper refers to)

❖ Method less beneficial over areas with stations separated by 

horizontal scales much larger than 120 km

New Study:

❖ 1: Estimate spatial correlations of measured snow depth and 

daily snow depth increments

❖ 2: Fit measured spatial correlations to modified Brasnett (1999)  

Equations to estimate correlation scale parameters
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1. Method for computing observed correlations

❖ Eastern (horizontal correlations) and western (vertical 

correlations) sub-regions. In-situ stations resampled onto 0.1 X 

0.10 spatial grid.  Binned horizontal correlations for 10 km from 0: 

500 km range. Binned vertical correlations  for 100 m from 0: 

5000 m vertical range and restricted to adjacent grid cells.    

Eastern region  (relatively flat)Western region 

(high mountains)
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2. Method for fitting binned correlations

❖ C1 is the autoregressive 

Brasnett equation – estimate α

❖ C2 is similar to C1 but with an 

amplitude A, which represents 

correlation when separation 

distance approaches zero–

estimate both A and α

❖ C3 is the  exponential 

brasnett equation, estimate both 

A and α
-----------------------------------------------

❖ Least square method using 

data of measured correlation (C)  

and corresponding distances (d)



12

Main Findings

➢ Large horizontal e-folding scales of observed snow 

depth and daily increments, at 430 km and 370 km, 

respectively, when including an amplitude, which is 

less than 1 (0.5 for daily increments and 0.7 for full 

snow depth). 

➢ Without considering the amplitude, e-folding horizonal 

scales are severely underestimated and the fit is poor. 

➢ Small vertical correlation of observed snow depth, at 

460 m, but the vertical correlation of daily increments is 

much larger, at 1170 m
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Results: Spatial correlations for horizontal distance

Snow Depth Daily Snow Depth

Increment
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Results: Spatial correlations for vertical distance

Snow Depth Daily Snow Depth

Increment
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Implications for operational snow depth analyses

➢ Horizontal correlation length scales of increments 

larger than 120 km need to be tested for improved 

predictions over poorly monitored areas. 

➢ Vertical scales are more uncertain due to insufficient 

sampling over complex terrain and shorter vertical 

length scales. 

➢ Interpolation of increments especially over complex 

terrain would be advantageous over full snow depth 

due to large scales and temporal consistency.   

➢ Scales were assumed isotropic and fixed over the 

winter period, and need to be tested for seasonal 

adjustments. 
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