

June 9-10, 2023, Chicago, Illinois, USA (online)

Essays on Ecosystem and Environmental Research

13th International Conference of Ecosystems

June 9-10, 2023, Chicago, Illinois, USA (online)

ESTIMATION OF REGIONAL SNOW DEPTH CORRELATION SCALES AND IMPLICATIONS FOR GLOBAL SNOW ANALYSES

Cezar Kongoli¹², Thomas M. Smith²

¹Earth System Science Interdisciplinary Center (ESSIC), University of Maryland College Park; ²National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (NESDIS), College Park, MD, United States;

Corresponding author: <u>Cezar.Kongoli@noaa.gov;</u>

Estimation of regional snow depth correlation scales and implications for global snow analyses

Cezar Kongoli and Thomas M. Smith

Earth System Science Interdisciplinary Center (ESSIC), University of Maryland College Park, USA

NOAA/NESDIS, College Park, Maryland, USA

June 9-10, 2023

ICE 2023

OVERVIEW

*** STATISTICAL INTERPOLATION FOR SNOW DEPTH ANALYSIS**

NEW STUDY* (Kongoli and Smith, Front. Earth Sci., 2023, volume 11)

- Measured snow depth spatial correlations over North America
- Fitted correlation functions and scale parameter estimates
- Main findings

✤ IMPLICATIONS FOR OPERATIONAL SNOW DEPTH ANALYSIS

* Modelling and estimation of snow depth spatial correlation structure from observations over North America"

STATISTICAL/OPTIMAL INTERPOLATION FOR SNOW DEPTH

Introduced by Brasnett (1999)

Brasnett, B., 1999. A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726-740.

Uses station-measured snow depth observations to generate daily gridded snow depth maps over the globe at 24 km resolution

Kriging Interpolation Method, adapted for use in meteorology by L.S. Gandin, 1965. "Objective Analysis of Meteorological Fields", Israel Program for Scientific Translation (from Russian).

STATISTICAL/OPTIMAL INTERPOLATION FOR SNOW DEPTH (SD) EXAMPLE USING ONLY THREE MEASUREMETS

Snow Depth Optimal Interpolation (OI)

SD increment at analysis point k △SD_k is computed as the weighted average of observed increments △SD_i surrounding k.

$$\Delta SD_k = \sum_{i=1}^{N} w_i \Delta SD_i$$

 ΔSD_i is the difference between the **observed SD** and the **first guess SD** at each observation point i [i = 1, N]

The vector of optimum weights at k is computed by solving the set of N linear equations of the matrix form:

$$\underline{w} = (\underline{B} + \underline{O})^{-1}\underline{b}$$

- \underline{B} is the correlation matrix of SD increments between all pairs of observations
- \underline{b} is the correlation vector of pairs of of observations and interpolation point k

is the matrix of SD observational errors (normalized by the first guess SD error variance) between all pairs of observations

Brasnett (1999) Increment Correlation Functions

• Correlation coefficients μ_{ij} between pairs of observations are computed as the product between the horizontal and vertical distance correlation functions:

$$\mu_{ij} = \alpha(r_{ij})\beta(\Delta z_{ij})$$

 r_{ij} is the horizontal separation distance between observations Δz_{ij} is elevation (vertical) separation distance between observations

2nd order autoregressive correlation function for horiz. distance $\alpha(r_{ij}) = (1 + cr_{ij}) \exp(-cr_{ij})$ $c = 0.018 \text{ km}^{-1}$ (e-folding scale $\approx 120 \text{ km}$)

Square exponential correlation function for vertical distance $\beta(\Delta z_{ij}) = exp(-(\Delta z_{ij}/h)^2)$ h = 800 m (e-folding scale = 800 m)

Plots of spatial correlations as a function of horizonal distance for several vertical distance values

7

Canadian Meteorological Center (CMC) Brasnett 1999 J. Applied. Meteorol, Global Snow Depth Analysis

KEY FEATURES

 <u>2-D Optimal Interpolation</u> (OI) since March 1998, at 24-km & every 6 hours
<u>Initial guess</u> - a simple snow accumulation and melt model using analyzed temperatures and forecast (six hour) precipitation from the CMC Global Environmental Multiscale (GEM) forecast
<u>Driven by in-situ SD observations;</u>

In regions where there are no SD observations, analysis SD corresponds to the initial guess field.

SD data-poor

No SD Data

Motivation for estimating spatial correlation structure

No information provided of how well the correlation functions represent the structure of snow depth increments (*nowhere to be found in Gandin (1965) that the paper refers to*)

Method less beneficial over areas with stations separated by horizontal scales much larger than 120 km

New Study:

 1: Estimate spatial correlations of measured snow depth and daily snow depth increments

Fit measured spatial correlations to modified Brasnett (1999)
Equations to estimate correlation scale parameters

1. Method for computing observed correlations

Eastern (horizontal correlations) and western (vertical correlations) sub-regions. In-situ stations resampled onto 0.1 X 0.1° spatial grid. Binned horizontal correlations for 10 km from 0: 500 km range. Binned vertical correlations for 100 m from 0: 5000 m vertical range and restricted to adjacent grid cells.

2. Method for fitting binned correlations

- Large horizontal e-folding scales of observed snow depth and daily increments, at 430 km and 370 km, respectively, when including an amplitude, which is less than 1 (0.5 for daily increments and 0.7 for full snow depth).
- Without considering the amplitude, e-folding horizonal scales are severely underestimated and the fit is poor.
- Small vertical correlation of observed snow depth, at 460 m, but the vertical correlation of daily increments is much larger, at 1170 m

Results: Spatial correlations for horizontal distance

	Scale	Amplitude	EFD	RMSE
Fit1	137.5	1.00ª	295.6	0.13
Fit2	200.0	0.72	430.1	0.03
Fit3	431.4	0.68	431.4	0.04

^aFixed a priori.

	Scale	Amplitude	EFD	RMSE
Fit1	84.6	1.00ª	181.9	0.18
Fit2	170.2	0.54	365.9	0.02
Fit3	378.0	0.51	378.0	0.03

^aFixed atablef priori.

Results: Spatial correlations for vertical distance

Implications for operational snow depth analyses

Horizontal correlation length scales of increments larger than 120 km need to be tested for improved predictions over poorly monitored areas.

- Vertical scales are more uncertain due to insufficient sampling over complex terrain and shorter vertical length scales.
- Interpolation of increments especially over complex terrain would be advantageous over full snow depth due to large scales and temporal consistency.
- Scales were assumed isotropic and fixed over the winter period, and need to be tested for seasonal adjustments.